
SQL : IMDB Movie Database

Your Mission

You've just been hired as a Junior Data Analyst at CineStream, a new streaming service that wants
to make data-driven decisions about which movies to license for their platform.

Your manager has given you access to a database containing information about the top-rated
movies from IMDB. She needs you to explore this database and answer several business questions
to help the content acquisition team make informed decisions about: - Which genres are most
popular among highly-rated films - Which directors and actors appear most frequently in successful
movies - What patterns exist in movie ratings and viewer engagement

This is your first day working with SQL (Structured Query Language), the standard language for
interacting with databases. Don't worry - we'll guide you through each step!

The IMDB Database Tables

The moviesdb database contains 6 tables that work together to store movie information:



Main Tables (Storing Core Data)

1. movies  - The heart of the database. (1000 movies)

Contains: Movie titles, release years, ratings, runtime, revenue (gross), and more

Each row = One movie

Key columns:

id : Unique identifier for each movie

title : Movie name

released_year : When it came out

imdb_rating : Score from 0-10

no_of_votes : How many people rated it

runtime : Length in minutes

director_id : Links to the directors table

2. actors  - All actors in the database. (2709 actors)

Contains: Actor names

Each row = One actor

Key columns:

id : Unique identifier



name : Actor's full name

3. directors  - All directors in the database. (548 directors)

Contains: Director names

Each row = One director

Key columns:

id : Unique identifier

name : Director's full name

4. genres  - All possible movie genres. (21 genres)

Contains: Genre categories (Action, Drama, Comedy, etc.)

Each row = One genre

Key columns:

id : Unique identifier

name : Genre name

 Relationship Tables (Connecting Data)

1. movie_actors  - Links movies with their actors. (3996 relations)

A movie has multiple actors, and actors appear in multiple movies

Key columns:

movie_id : Which movie

actor_id : Which actor

role_order : Billing order (1 = lead role, 2 = supporting, etc.)

2. movie_genres  - Links movies with their genres. (2541 relations)

A movie can have multiple genres (e.g., "Action" AND "Comedy"), a genre can be applied
to multiple movies

Key columns:

movie_id : Which movie

genre_id : Which genre

Understanding Table Relationships

One-to-Many Relationship (1:N)

movies ↔ directors: Each movie has ONE director, but a director can direct MANY movies

The director_id  in the movies table points to an id  in the directors table

Many-to-Many Relationships (N:N)

movies ↔ actors: A movie has MANY actors, and actors appear in MANY movies



Connected through the movie_actors  table

movies ↔ genres: A movie can have MANY genres, and each genre applies to MANY movies

Connected through the movie_genres  table

Load the database
Download the database file (< 1 Mb) from this link

Launch sqlite with the following command: bash sqlite3 moviesdb.sqlite

or using a GUI tool like DB Browser for SQLite

Exercises - deliverable
In the following exercises, you will be asked to write SQL queries to answer specific questions about
the database. Write your queries in the sqlite session.

Once you are satisfied with the result and copy the SQL query to a file called queries.sql . Do not
copy the result, just the sql statement.

Submit your queries.sql file at the end of the TP.

SQL Query Exercises

Section A: Your First Queries - Simple SELECT Statements

Let's start by exploring single tables. These queries will help you get comfortable with basic SQL
syntax.

A.1 - See All Genres

Task: Display all available genres in the database.

   genres

Expected: A list of all genre names with their IDs

A.2 - Find Specific Movie Information

SQL
-- Your query here:
SELECT * FROM ;

file:///assets/db/moviesdb.sqlite
https://sqlitebrowser.org/


Task: Your manager wants to know the title , release year , and IMDB rating  for all movies.
Display only these three columns.

 title  released_year  imdb_rating
 movies

Hint: Instead of using *, list the specific column names separated by commas

A.3 - Browse Recent Movies

Task: Find all movies released after 2015. Show title , release year , and IMDB rating .

 title  released_year  imdb_rating
 movies
 released_year  

Hint: use the WHERE clause to filter your results

A.4 - Find Highly-Rated Movies

Task: The content team wants movies with an IMDB rating of 8.5 or higher. Show title ,
imdb_rating , and no_of_votes .

 title  imdb_rating  no_of_votes
 movies
 imdb_rating  

A.5 - Search for a Specific Director

Task: Check if "Christopher Nolan" is in our directors database.

 
 directors
 name  

Hint: Use =  for exact matches with text (put text in single quotes)

SQL
-- Your query here:
SELECT , ,
FROM ;

SQL
-- Your query here:
SELECT , ,
FROM
WHERE > 2015;

SQL
-- Your query here:
SELECT , ,
FROM
WHERE >= 8.5;

SQL
-- Your query here:
SELECT *
FROM
WHERE = 'Christopher Nolan';



Section B: Sorting and Limiting Results

Now let's control how our results are displayed.

B.1 - Top Rated Movies

Task: Show the top 10 highest-rated movies. Display title  and imdb_rating , sorted by rating
(highest first).

 title  imdb_rating
 movies
  imdb_rating 
 

Hint: DESC = descending (high to low), ASC = ascending (low to high)

B.2 - Most Popular Movies

Task: Find the 5 movies with the most votes. Show title  and no_of_votes , ordered by votes.

 title  no_of_votes
 movies
  no_of_votes 
 

B.3 - Longest Movies

Task: What are the 10 longest movies? Display title  and runtime  (in minutes), ordered by
runtime .

 title  runtime
 movies
  runtime 
 

B.4 - Recent Blockbusters

Task: Find movies from 2010 or later with a rating above 8.0. Show title , released_year , and
imdb_rating . Sort by year (newest first).

SQL
-- Your query here:
SELECT ,
FROM
ORDER BY DESC
LIMIT 10;

SQL
-- Your query here:
SELECT ,
FROM
ORDER BY DESC
LIMIT 5;

SQL
-- Your query here:
SELECT ,
FROM
ORDER BY DESC
LIMIT 10;



 title  released_year  imdb_rating
 movies
 released_year    imdb_rating  
  released_year 

Hint: Use AND to combine multiple conditions

B.5 - Finding Movies in a Rating Range

Task: Find all movies with ratings between 7.5 and 8.0 (inclusive). Display title and imdb_rating,
sorted by rating.

 title  imdb_rating
 movies
 imdb_rating    imdb_rating  
  imdb_rating 

Alternative: You can use BETWEEN  instead of >=  and <=

Section C: Using Simple Functions

Let's learn some basic SQL functions to analyze and clean our data.

C.1 - Counting Movies

Task: How many movies are in our database? return the total as total_movies

   total_movies
 movies

Hint: COUNT(*) counts all rows. AS gives a nickname to the result column.

C.2 - Counting High-Budget Films

Task: How many movies have box office earnings (gross) recorded?

SQL
-- Your query here:
SELECT , ,
FROM
WHERE >= 2010 AND > 8.0
ORDER BY DESC;

SQL
-- Your query here:
SELECT ,
FROM
WHERE >= 7.5 AND <= 8.0
ORDER BY DESC;

SQL
-- Your query here:
SELECT COUNT(*) AS
FROM ;



 gross   movies_with_earnings
 movies

Hint: COUNT(column_name) only counts non-NULL values

C.3 - Handling Missing Data

Task: Display movie titles and their metascore, but show 'No Score' for movies without a metascore.

 title
       CAST meta_score     metacritic_score

 movies
 

Hint: COALESCE replaces NULL values with something else. check out the sqlite documentation
for more info

C.4 - Cleaning Up Certificate Data

Task: Show movie titles and certificates. Replace NULL certificates with 'Not Rated'.

 title
       certificate    rating_certificate

 movies
 

C.5 - Finding Movies with Missing Information

Task: Count how many movies are missing their gross (box office) information.

   gross   movies_without_gross
 movies

Hint: COUNT(*) minus COUNT(gross) gives us the count of NULL values

Section D: Your First Joins - Connecting Tables

SQL
-- Your query here:
SELECT COUNT( ) AS
FROM ;

SQL
-- Your query here:
SELECT ,

COALESCE( ( AS TEXT), 'No Score') AS
FROM
LIMIT 20;

SQL
-- Your query here:
SELECT ,

COALESCE( , 'Not Rated') AS
FROM
LIMIT 15;

SQL
-- Your query here:
SELECT COUNT(*) - COUNT( ) AS
FROM ;

https://sqlite.org/lang_corefunc.html#coalesce


Now for the exciting part! Let's connect tables to answer more complex questions.

D.1 - Movies with Director Names

Task: Show movie titles with their director names (not just director_id). Display the first 10 results.

 movies title  directors name  director_name
 movies
 directors  movies director_id  directors id
 

Hint: JOIN connects two tables (movies and directors) using matching values (director_id = id)

D.2 - Finding a Director's Movies

Task: Find all movies directed by "Christopher Nolan". Show title and released_year.

 movies title  movies released_year
 movies
 directors  movies director_id  directors id
 directors name  
  movies released_year

D.3 - Movies and Their Genres

Task: Show movie titles with their genre names. Display the first 20 results.

 movies title  genres name  genre
 movies
 movie_genres  movies id  movie_genres movie_id
 genres  movie_genres genre_id  genres id
 

Hint: You can chain multiple JOINs to connect several tables (movies, movie_genres, genres)

D.4 - Finding Action Movies

Task: Find all movies in the "Action" genre. Display title  and imdb_rating , sorted by rating.

SQL
-- Your query here:
SELECT . , . AS
FROM
JOIN ON . = .
LIMIT 10;

SQL
-- Your query here:
SELECT . , .
FROM
JOIN ON . = .
WHERE . = 'Christopher Nolan'
ORDER BY . ;

SQL
-- Your query here:
SELECT . , . AS
FROM
JOIN ON . = .
JOIN ON . = .
LIMIT 20;



 movies title  movies imdb_rating
 movies
 movie_genres  movies id  movie_genres movie_id
 genres  movie_genres genre_id  genres id
 genres name  
  movies imdb_rating 

D.5 - Movies with Their Lead Actors

Task: Show movies with their lead actors (role_order = 1). Display movie title  and actor
name .

 movies title  actors name  lead_actor
 movies
 movie_actors  movies id  movie_actors movie_id
 actors  movie_actors actor_id  actors id
 movie_actors role_order  
 

Section E: Combining Everything - Advanced Queries

Let's combine all the concepts you've learned!

E.1 - High-Rated Movies with Directors

Task: Find movies with rating >= 8.5 and show them with director names. Sort by rating.

 movies title  movies imdb_rating  directors name  director
 movies
 directors  movies director_id  directors id
 movies imdb_rating  
  movies imdb_rating 

E.2 - Recent Movies in Drama Genre

Task: Find Drama movies from 2010 onwards. Show title , year , and rating .

SQL
-- Your query here:
SELECT . , .
FROM
JOIN ON . = .
JOIN ON . = .
WHERE . = 'Action'
ORDER BY . DESC;

SQL
-- Your query here:
SELECT . , . AS
FROM
JOIN ON . = .
JOIN ON . = .
WHERE . = 1
LIMIT 20;

SQL
-- Your query here:
SELECT . , . , . AS
FROM
JOIN ON . = .
WHERE . >= 8.5
ORDER BY . DESC;



 movies title  movies released_year  movies imdb_rating
 movies
 movie_genres  movies id  movie_genres movie_id
 genres  movie_genres genre_id  genres id
 genres name  

   movies released_year  
  movies released_year 

E.3 - Director's Best Movies

Task: Find Steven Spielberg's top 5 highest-rated movies. Display title , rating , and year .

 movies title  movies imdb_rating  movies released_year
 movies
 directors  movies director_id  directors id
 directors name  
  movies imdb_rating 
 

E.4 - Movies with Complete Information

Task: Find movies that have both gross earnings AND meta_score recorded. Show title  and
both values, sorted by gross earnings.

 title  gross  meta_score
 movies
 gross   

   meta_score   
  gross 
 

Hint: IS NOT NULL checks for non-missing values

E.5 - Star-Studded Movies

Task: Find movies where "Tom Hanks" is the lead actor (role_order = 1). Show movie title ,
release year , and rating .

SQL
-- Your query here:
SELECT . , . , .
FROM
JOIN ON . = .
JOIN ON . = .
WHERE . = 'Drama'

AND . >= 2010
ORDER BY . DESC;

SQL
-- Your query here:
SELECT . , . , .
FROM
JOIN ON . = .
WHERE . = 'Steven Spielberg'
ORDER BY . DESC
LIMIT 5;

SQL
-- Your query here:
SELECT , ,
FROM
WHERE IS NOT NULL

AND IS NOT NULL
ORDER BY DESC
LIMIT 10;



 movies title  movies released_year  movies imdb_rating
 movies
 movie_actors  movies id  movie_actors movie_id
 actors  movie_actors actor_id  actors id
 actors name  

   movie_actors role_order  
  movies released_year 

Section F: GROUP BY - Aggregating Data

Time to learn one of SQL's most powerful features: GROUP BY. This allows us to create summaries
and calculate statistics for groups of data.

Understanding GROUP BY

What does GROUP BY do? GROUP BY groups rows that have the same values in specified
columns and allows you to perform calculations on each group.

Think of it like this: - Without GROUP BY: "Count all movies in the database" - With GROUP BY:
"Count movies FOR EACH director" or "Count movies FOR EACH genre"

The Rule: When using GROUP BY, you can only SELECT: 1. The columns you're grouping by 2.
Aggregate functions (COUNT, AVG, MAX, MIN, SUM) on other columns

Example Structure: sql SELECT director_id, COUNT(*) as movie_count FROM movies
GROUP BY director_id; This counts how many movies each director has made.

F.1 - Movies Per Director

Task: Count how many movies each director has directed. Show director_id and the count.

 director_id    number_of_movies
 movies
  director_id
  number_of_movies 
 

Hint: GROUP BY creates one row per unique director_id

F.2 - Movies Per Year

Task: How many movies were released each year? Show the year and count, sorted by year.

SQL
-- Your query here:
SELECT . , . , .
FROM
JOIN ON . = .
JOIN ON . = .
WHERE . = 'Tom Hanks'

AND . = 1
ORDER BY . DESC;

SQL
-- Your query here:
SELECT , COUNT(*) AS
FROM
GROUP BY
ORDER BY DESC
LIMIT 10;



 released_year    movies_count
 movies
  released_year
  released_year 

F.3 - Average Rating Per Director

Task: Calculate the average IMDB rating for each director. Show director name and average rating,
sorted by average rating (highest first).

 directors name  movies imdb_rating   avg_rating
 movies
 directors  movies director_id  directors id
  directors id  directors name
  avg_rating 
 

Hint: AVG() calculates the average of a numeric column

F.4 - Genre Popularity

Task: Count how many movies belong to each genre. Show genre name and count.

 genres name  genre    movie_count
 movie_genres
 genres  movie_genres genre_id  genres id
  genres id  genres name
  movie_count 

F.5 - Actor Appearances

Task: Count how many movies each actor appears in. Show actor name and count for actors with 5
or more movies.

SQL
-- Your query here:
SELECT , COUNT(*) AS
FROM
GROUP BY
ORDER BY DESC;

SQL
-- Your query here:
SELECT . , AVG( . ) AS
FROM
JOIN ON . = .
GROUP BY . , .
ORDER BY DESC
LIMIT 15;

SQL
-- Your query here:
SELECT . AS , COUNT(*) AS
FROM
JOIN ON . = .
GROUP BY . , .
ORDER BY DESC;



 actors name    movie_appearances
 movie_actors
 actors  movie_actors actor_id  actors id
  actors id  actors name
   

  movie_appearances 

Hint: HAVING filters groups (use it after GROUP BY, while WHERE filters rows before grouping)

F.6 - Directors' Best and Worst

Task: For directors with at least 3 movies, show their name, movie count, highest rating, and lowest
rating.

 directors name
         total_movies
       movies imdb_rating   best_rating
       movies imdb_rating   worst_rating

 movies
 directors  movies director_id  directors id
  directors id  directors name
   

  best_rating 

Hint: You can use multiple aggregate functions in one query

F.7 - Box Office by Genre

Task: Calculate the total and average box office (gross) for each genre. Only include genres with at
least 10 movies.

 genres name  genre
         movie_count
       movies gross   total_gross
       movies gross   avg_gross

 movies
 movie_genres  movies id  movie_genres movie_id
 genres  movie_genres genre_id  genres id
 movies gross   
  genres id  genres name
   

  total_gross 

SQL
-- Your query here:
SELECT . , COUNT(*) AS
FROM
JOIN ON . = .
GROUP BY . , .
HAVING COUNT(*) >= 5
ORDER BY DESC;

SQL
-- Your query here:
SELECT . ,

COUNT(*) AS ,
MAX( . ) AS ,
MIN( . ) AS

FROM
JOIN ON . = .
GROUP BY . , .
HAVING COUNT(*) >= 3
ORDER BY DESC;

SQL
-- Your query here:
SELECT . AS ,

COUNT(*) AS ,
SUM( . ) AS ,
AVG( . ) AS

FROM
JOIN ON . = .
JOIN ON . = .
WHERE . IS NOT NULL
GROUP BY . , .
HAVING COUNT(*) >= 10
ORDER BY DESC;



Hint: SUM() adds up all values in a group

 Congratulations!

You've completed your first SQL worksheet! You've learned how to: - Write basic SELECT queries -
Filter results with WHERE - Sort with ORDER BY and limit results - Use functions like COUNT and
COALESCE - Join tables to answer complex questions - Use GROUP BY to aggregate and
summarize data - Filter groups with HAVING

Final Challenge: Write a query to find which year had the highest average IMDB rating for movies
(considering only years with at least 5 movies).

Quick Reference

SELECT: Choose columns to display

FROM: Specify the table

WHERE: Filter rows (before grouping)

JOIN...ON: Connect tables

GROUP BY: Group rows for aggregation

HAVING: Filter groups (after grouping)

ORDER BY: Sort results

LIMIT: Restrict number of rows

Aggregate Functions: - COUNT(): Count rows - AVG(): Calculate average - SUM(): Add up values
- MAX(): Find maximum value - MIN(): Find minimum value - COALESCE(): Replace NULL values -
AND/OR: Combine conditions - IS NULL / IS NOT NULL: Check for missing values


