
AnIn211 - Practical programming in Python

PW05 - OOP - Basics(2)

PW05

Object Oriented Programming

Basics (2)

Module AnIn211 — 2nd year

Contents

1. Objectives and Reminders 1

1.1 Objectives 1

1.2 Quick reminders 1

1.3 Course material (studied at home) 1

1.4 Deliverables 1

2. Guided exercises 1

2.1 Definitions and concepts 1

2.2 Predicting the code output 1

3. PW – Practical exercises 2

3.1 The Book class 2

3.2 The Point class 2

4. Mini-Project – Weather Station (To finish at home) ... 3

1. Objectives and Reminders

1.1 Objectives

✓ Distinguish between instance attributes and class attributes and know how to manipulate them. ✓
Understand the role and limitations of a destructor (__del__). ✓ Read a simple UML class diagram

and translate it into Python code.

1.2 Quick reminders

• Class attribute: variable shared by all instances of the class. It is accessed and modified via the
class name, for example: ClassName.class_attribute . • Destructor (__del__): method called
when the object is destroyed, used to free resources. • UML notation: graphical representation of a
class as a rectangle divided into three compartments: name, attributes, and methods.

1.3 Course material (studied at home)

• PythonA2C05_Objet1.pdf

1.4 Deliverables

✓ Submit all Python (.py) files produced during this lab on Moodle.

2. Guided exercises

2.1 Definitions and concepts

a. What is the difference between a class attribute and an instance attribute? b. In which case is it
relevant to use a class attribute? Provide a concrete example. c. What is the role of a destructor
__del__ in Python? Give a reasonable use case. d. Name the three compartments of a UML class
diagram.

2.2 Predicting the code output

Guess the output of the code without executing, then check your answer by running it.

 total

 self name
 self name name
 Counter total
 f

 self
 Counter total
 f

c1 Counter
c2 Counter

 c1
c2 total

Python
class Counter:

= 0

def __init__(,):
. =

. += 1
print("created: {self.name} / total={Counter.total}")

def __del__():
. -= 1

print("destroyed: {self.name} / total={Counter.total}")

= ("A")
= ("B")

del
print(.)

3. PW – Practical exercises

3.1 The Book class

In a file named book.py , implement the class Book , using the UML diagram below.

!"""""""""""""""""""""""""""""""""#
$ Book $
%"""""""""""""""""""""""""""""""""&
$ + title: str $
$ + author: str $
%"""""""""""""""""""""""""""""""""&
$ + __init__(self, title, author) $
$ + display(self) $
'"""""""""""""""""""""""""""""""""(

Figure 1 – UML diagram - Book class

• The method display() : displays the book's information. • Outside the class, create an instance
of Book and call the display() method.

3.2 The Point class

In a file point.py , define a class Point representing a point in the 2D plane. Each Point object
has two attributes x and y of type float.

!"""""""""""""""""""""""""""""""""#
$ Point $
%"""""""""""""""""""""""""""""""""&
$ + x: float $
$ + y: float $
$ + nb_points: int $
%"""""""""""""""""""""""""""""""""&
$ + __init__(self, x, y) $
$ + display(self) $
$ + distance_origine(self) $
$ + distance(self, p) $
$ + __del__(self) $
'"""""""""""""""""""""""""""""""""(

Figure 2 – UML diagram of class Point

To implement in the Point class:

a. Constructor without parameters

• Add to the Point class a constructor (__init__(self)) without parameters. • Initialize the
attributes x and y to 0.0 . • Test the class by creating an object p1 , then modifying its attributes.

b. Constructor with parameters

• Modify the constructor by adding two parameters (in addition to self) to initialize x and y . •
Provide default values 0.0 to avoid errors during instantiation without arguments:
__init__(self, x=0, y=0) . • Add the method display(self) which displays the coordinates
in the format (x, y) . • Test your class by creating an object p2 with random coordinates using
random.random()*10 , and calling the display method.

c. Calculation methods

• Add the method distance_origine(self) : this method calculates and returns the distance to
the origin (0, 0). - Use the Euclidean distance formula: d = √(x² + y²) - Display the distance of
p2 to the origin with distance_origine .

• Add the method distance(self, p) : which takes another Point as argument and returns the
distance between the two points: - d = √((x₂ - x₁)² + (y₂ - y₁)²) - Calculate and display the
distance between p1 and p2 using the distance method.

d. Class attribute

• Add to the class the class attribute nb_points initialized to 0 (counter of the number of
instances). • In the __init__ , increment the class attribute nb_points at each object creation. •
Add a destructor __del__(self) which decrements nb_points when an object is destroyed.

e. Final test:

• Create several Point objects and display the value of the class attribute nb_points . • Delete
one or more references with del and observe the counter update.

Note: depending on the execution environment, the destruction of an object occurs when all its
references are deleted. In a simple script, the counter update should be visible immediately after
del .

4. Mini-Project – Weather Station (To finish at home)

Objective: Evolve the CapteurTemperature class (capteur.py) by adding class attributes and a
destructor __del__ , then model the class with a simple UML diagram.

a. Class attribute and destructor:

• Class attributes to add in CapteurTemperature : - nbr_capteurs : of type int and initialized to
0 (instance counter, total number of sensors) - PLAGE : a tuple containing 2 values initialized to
(-50.0, 60.0) (canonical valid range for temperature).

• Modify the __init__ constructor to increment the total number of sensors at each instance
creation. • Add a destructor __del__ that decrements the counter and displays a message when
the object is destroyed, for example "Sensor [name] has been removed".

b. Advanced calculations

• Add a method calculer_ecart_type to calculate the standard deviation of values recorded in
historique . - Handle the case of less than 2 measurements: return None (or raise a documented
exception).

c. Practice

• After the 5 measurement simulations, display the nbr_capteurs to verify proper incrementation. •
Display the standard deviation of each sensor using the new method.

d. UML Diagram

• On paper or with a modeling tool, draw a UML diagram of the CapteurTemperature class
showing its attributes (with their visibility and type) and its methods.

