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1. Objectives and Reminders

1.1 Objectives

✓ Distinguish between instance attributes and class attributes and know how to manipulate them. ✓
Understand the role and limitations of a destructor ( __del__ ). ✓ Read a simple UML class diagram



and translate it into Python code.

1.2 Quick reminders

• Class attribute: variable shared by all instances of the class. It is accessed and modified via the
class name, for example: ClassName.class_attribute . • Destructor ( __del__ ): method called
when the object is destroyed, used to free resources. • UML notation: graphical representation of a
class as a rectangle divided into three compartments: name, attributes, and methods.

1.3 Course material (studied at home)

• PythonA2C05_Objet1.pdf

1.4 Deliverables

✓ Submit all Python (.py) files produced during this lab on Moodle.

2. Guided exercises

2.1 Definitions and concepts

a. What is the difference between a class attribute and an instance attribute? b. In which case is it
relevant to use a class attribute? Provide a concrete example. c. What is the role of a destructor
__del__  in Python? Give a reasonable use case. d. Name the three compartments of a UML class
diagram.

2.2 Predicting the code output

Guess the output of the code without executing, then check your answer by running it.
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class Counter:

= 0

def __init__( , ):
. =

. += 1
print( "created: {self.name} / total={Counter.total}")

def __del__( ):
. -= 1

print( "destroyed: {self.name} / total={Counter.total}")

= ("A")
= ("B")

del
print( . )



3. PW – Practical exercises

3.1 The Book class

In a file named book.py , implement the class Book , using the UML diagram below.

!"""""""""""""""""""""""""""""""""#
$            Book                  $
%"""""""""""""""""""""""""""""""""&
$ + title: str                    $
$ + author: str                   $
%"""""""""""""""""""""""""""""""""&
$ + __init__(self, title, author) $
$ + display(self)                 $
'"""""""""""""""""""""""""""""""""(

Figure 1 – UML diagram - Book class

• The method display() : displays the book's information. • Outside the class, create an instance
of Book  and call the display()  method.

3.2 The Point class

In a file point.py , define a class Point  representing a point in the 2D plane. Each Point  object
has two attributes x  and y  of type float.

!"""""""""""""""""""""""""""""""""#
$            Point                 $
%"""""""""""""""""""""""""""""""""&
$ + x: float                      $
$ + y: float                      $
$ + nb_points: int                $
%"""""""""""""""""""""""""""""""""&
$ + __init__(self, x, y)          $
$ + display(self)                 $
$ + distance_origine(self)        $
$ + distance(self, p)             $
$ + __del__(self)                 $
'"""""""""""""""""""""""""""""""""(

Figure 2 – UML diagram of class Point

To implement in the Point class:

a. Constructor without parameters

• Add to the Point  class a constructor ( __init__(self) ) without parameters. • Initialize the
attributes x  and y  to 0.0 . • Test the class by creating an object p1 , then modifying its attributes.



b. Constructor with parameters

• Modify the constructor by adding two parameters (in addition to self ) to initialize x  and y . • 
Provide default values 0.0  to avoid errors during instantiation without arguments:
__init__(self, x=0, y=0) . • Add the method display(self)  which displays the coordinates
in the format (x, y) . • Test your class by creating an object p2  with random coordinates using
random.random()*10 , and calling the display  method.

c. Calculation methods

• Add the method distance_origine(self) : this method calculates and returns the distance to
the origin (0, 0). - Use the Euclidean distance formula: d = √(x² + y²)  - Display the distance of
p2  to the origin with distance_origine .

• Add the method distance(self, p) : which takes another Point  as argument and returns the
distance between the two points: - d = √((x₂ - x₁)² + (y₂ - y₁)²)  - Calculate and display the
distance between p1  and p2  using the distance  method.

d. Class attribute

• Add to the class the class attribute nb_points  initialized to 0 (counter of the number of
instances). • In the __init__ , increment the class attribute nb_points  at each object creation. •
Add a destructor __del__(self)  which decrements nb_points  when an object is destroyed.

e. Final test:

• Create several Point  objects and display the value of the class attribute nb_points . • Delete
one or more references with del  and observe the counter update.

Note: depending on the execution environment, the destruction of an object occurs when all its
references are deleted. In a simple script, the counter update should be visible immediately after
del .

4. Mini-Project – Weather Station (To finish at home)

Objective: Evolve the CapteurTemperature  class ( capteur.py ) by adding class attributes and a
destructor __del__ , then model the class with a simple UML diagram.

a. Class attribute and destructor:

• Class attributes to add in CapteurTemperature : - nbr_capteurs : of type int and initialized to
0 (instance counter, total number of sensors) - PLAGE : a tuple containing 2 values initialized to
(-50.0, 60.0) (canonical valid range for temperature).

• Modify the __init__  constructor to increment the total number of sensors at each instance
creation. • Add a destructor __del__  that decrements the counter and displays a message when
the object is destroyed, for example "Sensor [name] has been removed".

b. Advanced calculations



• Add a method calculer_ecart_type  to calculate the standard deviation of values recorded in
historique . - Handle the case of less than 2 measurements: return None  (or raise a documented
exception).

c. Practice

• After the 5 measurement simulations, display the nbr_capteurs  to verify proper incrementation. •
Display the standard deviation of each sensor using the new method.

d. UML Diagram

• On paper or with a modeling tool, draw a UML diagram of the CapteurTemperature  class
showing its attributes (with their visibility and type) and its methods.


