AnIn211 - Practical programming in Python

PWO05 - OOP - Basics(2)
PWO05

Object Oriented Programming
Basics (2)

Module AnIin211 — 2nd year

Contents

1. Objectives and Reminders 1

o 1.1 Objectivescccevviiieiieiiiiee. 1
o 1.2 Quick reminderscccceeiiiiennennne 1
o 1.3 Course material (studied at home) 1

o 1.4 Deliverablesccocccovveeveeeinennnns 1
2. Guided exercisesccoeevveveriiinnnnennn. 1

o 2.1 Definitions and concepts 1

o 2.2 Predicting the code output 1
3. PW - Practical exercisescccccoeeuunnn..e. 2

o 3.1 The Book classccccoeeevueviurennnns 2
o 3.2The Pointclassccovvvvnveenneenn. 2

4. Mini-Project — Weather Station (To finish at home) ... 3

1. Objectives and Reminders

1.1 Objectives

v Distinguish between instance attributes and class attributes and know how to manipulate them. v’
Understand the role and limitations of a destructor (__del__). v Read a simple UML class diagram

and translate it into Python code.

1.2 Quick reminders

« Class attribute: variable shared by all instances of the class. It is accessed and modified via the
class name, for example: ClassName.class_attribute . « Destructor (__del__): method called
when the object is destroyed, used to free resources. + UML notation: graphical representation of a
class as a rectangle divided into three compartments: name, attributes, and methods.

1.3 Course material (studied at home)
* PythonA2C05_Objet1.pdf
1.4 Deliverables

v Submit all Python (.py) files produced during this lab on Moodle.

2. Guided exercises

2.1 Definitions and concepts

a. What is the difference between a class attribute and an instance attribute? b. In which case is it
relevant to use a class attribute? Provide a concrete example. c. What is the role of a destructor
del__ in Python? Give a reasonable use case. d. Name the three compartments of a UML class

diagram.
2.2 Predicting the code output

Guess the output of the code without executing, then check your answer by running it.

class Counter:
total =

def __init__(self, name):
self.name = name
Counter.total +=
print(f"created: {self.name} / total={Counter.total}")

__del__(self):
Counter.total -=
print(f"destroyed: {self.name} / total={Counter.total}")

cl = Counter("A™)
c2 = Counter("B™)
del cl
print(c2.total)

3. PW - Practical exercises

3.1 The Book class

In a file named book.py , implement the class Book , using the UML diagram below.

| + title: str [

| + author: str [
e
| + __init__(self, title, author) |
| + display(self) [

e — |

Figure 1 — UML diagram - Book class

* The method display() : displays the book's information. » Outside the class, create an instance
of Book and call the display() method.

3.2 The Point class

In afile point.py, define a class Point representing a point in the 2D plane. Each Point object
has two attributes x and y of type float.

| + x: float

| + y: float

| + nb_points: int

_—
__init__(self, x, y)
display(self)

distance(self, p)
__del__(self)

e — |

| +
| +
| + distance_origine(self)
| +
| +

Figure 2 — UML diagram of class Point
To implement in the Point class:
a. Constructor without parameters

+ Add to the Point class a constructor (__init__(self)) without parameters. * Initialize the
attributes x and y to 0.0 . - Test the class by creating an object p1, then modifying its attributes.

b. Constructor with parameters

» Modify the constructor by adding two parameters (in addition to self) to initialize x and y .-« !
Provide default values 0.0 to avoid errors during instantiation without arguments:
__1init__(self, x=0, y=0) .-+ Add the method display(self) which displays the coordinates
in the format (x, y) .« Test your class by creating an object p2 with random coordinates using
random. random()*10@ , and calling the display method.

c. Calculation methods

» Add the method distance_origine(self) : this method calculates and returns the distance to
the origin (0, 0). - Use the Euclidean distance formula: d = {(x? + y?) - Display the distance of
p2 to the origin with distance_origine.

+ Add the method distance(self, p) :which takes another Point as argument and returns the
distance between the two points: - d = V((xz - x1)2 + (yz - y1)2) - Calculate and display the
distance between pl and p2 using the distance method.

d. Class attribute

+ Add to the class the class attribute nb_points initialized to 0 (counter of the number of
instances). * Inthe __init__, increment the class attribute nb_points at each object creation. *
Add a destructor __del__(self) which decrements nb_points when an object is destroyed.

e. Final test:

+ Create several Point objects and display the value of the class attribute nb_points . « Delete
one or more references with del and observe the counter update.

Note: depending on the execution environment, the destruction of an object occurs when all its
references are deleted. In a simple script, the counter update should be visible immediately after
del .

4. Mini-Project — Weather Station (To finish at home)

Objective: Evolve the CapteurTemperature class (capteur.py) by adding class attributes and a
destructor __del__, then model the class with a simple UML diagram.

a. Class attribute and destructor:

+ Class attributes to add in CapteurTemperature : - nbr_capteurs : of type int and initialized to
0 (instance counter, total number of sensors) - PLAGE : a tuple containing 2 values initialized to
(-50.0, 60.0) (canonical valid range for temperature).

_ __ constructor to increment the total number of sensors at each instance
creation. « Add a destructor __del__ that decrements the counter and displays a message when
the object is destroyed, for example "Sensor [name] has been removed".

* Modify the __init

b. Advanced calculations

* Add a method calculer_ecart_type to calculate the standard deviation of values recorded in
historique . - Handle the case of less than 2 measurements: return None (or raise a documented
exception).

c. Practice

+ After the 5 measurement simulations, display the nbr_capteurs to verify proper incrementation. -
Display the standard deviation of each sensor using the new method.

d. UML Diagram

+ On paper or with a modeling tool, draw a UML diagram of the CapteurTemperature class
showing its attributes (with their visibility and type) and its methods.

